DEVELOPMENT SERVER: content may be inaccurate

DHCP Standards

Lease Time Guidelines

The default DHCP lease time is 1 day, which is well suited for nets with low turnover (i.e. the population of client machines is fairly stable and doesn’t change much).

Network administrators may choose to configure a different lease time on individual IPv4 DHCP Ranges (Dynamic Pools), subject to the following guidelines which are designed to keep overall load on the DHCP servers from growing unsustainably:

Lease time Guideline
1 day or longer Recommended for most networks
between 4 hours and 1 day No problem, use freely where desired for IPv4 nets with higher host turnover
between 1 hour and 4 hours Acceptable, but please exercise good judgment and use only where necessary
less than 1 hour Requires approval from service manager

Because IPv6 subnets are so spacious, there is generally no reason to reduce the DHCPv6 lease time parameters; IPv6 nets with higher host turnover which require Stateful autoconfiguration can simply be configured with larger DHCP Ranges in order to avoid running out of leases.

Range Size Guidelines

IPv4 DHCP Ranges (Dynamic Pools) should be sized so that the number of unassigned IP addresses in the Range (after all desired clients have obtained their leases, and not counting any addresses within Exclusion Ranges) will be at least 1-5% of the total, with a minimum of at least 2 unassigned IP addresses (even for very small Ranges) in order to properly utilize the redundancy provided by DHCP Failover.

Total Addresses in Range Minimum Unassigned Addresses
3-40 at least 2 addresses
41-200 at least 2-10 addresses (1-5% of total)
201+ at least 1-5% of total

Note: Email Alert thresholds should also be adjusted accordingly (to higher than 95%) if the expected number of unassigned IP addresses is less than 5% of the total.

Service Defaults

The following DHCP settings serve as defaults; they are configured at the top level of the Grid hierarchy and automatically inherited by all Networks. An individual Network, DHCP Range, DHCP Fixed Address, or DHCP-enabled Host can override one of these defaults by specifying its own value for the setting.

Client options

For DHCPv4:

code name value
6 domain-name-servers 130.126.2.131
42 ntp-servers 130.126.24.24, 130.126.24.44, 130.126.24.53
252 wpad-url ” ” (a blank space)

Proactively distributing a blank space for option 252 forestalls the Windows client behavior of continually sending DHCPINFORM requests to the DHCP server in an attempt to “automatically detect proxy settings”. This option value can of course be overridden with a real WPAD URL on individual subnets where automatic proxy configuration is desired.

For DHCPv6:

code name value
23

name-servers

2620:0:e00:a::1

Service settings

For DHCPv4:

  • Lease Time: 1 day (see Lease Time Guidelines above)
  • Authoritative: true
  • Ping Check: 1 request, with 1 second timeout

    This setting cannot be overridden for individual Networks or Ranges.

  • Enable DDNS Updates: false

    ddns-updates false prevents the DHCP server from attempting to do dynamic DNS updates on behalf of clients that choose to send a Client FQDN value in their DHCPREQUEST. This setting is not one of the options transmitted to clients, and will not affect their ability to perform their own dynamic DNS updates in Active Directory (or any other DDNS server).

For DHCPv6:

  • Valid Lifetime: 2 days
  • Preferred Lifetime: 1 day

  • Enable DDNS Updates: false

Networking Public Home

This is the home page for the Networking Public wiki space, which is viewable by the general public.

sysLocation Format

Example:

r:2110A b:0210 c:c p:F71871 f:2 ra:2 z:5 ru:4 N:DCL #comment

Tools:

Semantics

Key

Priority

Description of Value

R

room

3 ⭐️

room “number” (actually string) where the device’s CER resides

B

building

1 ✅ 🔴

number of building where the device’s CER resides

C

cer

2 ✅ 🔴

string designator code (unique within building) of CER where the device is installed

P

pas

4 ✅

Property Accounting Sticker code for device

F

floor

number of building floor on which the device’s CER resides

RA

rack

5 ✅

number of rack (unique within CER) in which device is installed

Z

z

6 ✅

height (in rack units) at which the device is installed within the rack, with z:1 indicating the bottom position.

RU

ru

number of rack units the device occupies

N

nice

7

“nice name” by which CITES Networking refers to the building (not the official F&S building name)

✅: sysLocation is the authoritative source for this data
🔴: required for E-911
⭐️: not authoritative, but critically important to humans

Notes

Room is not authoritative, as it can logically be derived from building and cer (plus a table of information about known CERs). However, it is critically important to humans that the room value in sysLocation be present and correct, so that network support personnel responding to a page can easily track down a device using only the information from its saved config.

Note that cer is not derivable; there are some cases where a single room can contain more than one CER.

Floor is not authoritative, nor particularly important to humans reading sysLocation, and should probably be phased out over time.

Ru is actually a property of a device’s model (rather than of an individual device), could be derived from sysObjectID plus a table of known information about device models, and should probably be phased out over time.

Nice is a friendly nickname for a building which is made up internally by CITES Networking; it should never be treated as “authoritative” nor exposed externally, but its presence in sysLocation is useful to humans, and it is desirable that its value (for a given building) be consistent across devices.

Priority

We have discovered empirically that some devices limit the number of characters in the sysLocation field (e.g. to 48), and may silently fail to store a longer value.

When updating sysLocation for a device:

  1. Always double-check after setting sysLocation to verify that the desired value was in fact successfully stored!
  2. If the desired sysLocation string is too long for the device to accept, choose which fields to include based on the priority ordering given in the table.

Syntax

Unique prefixes of keys are permitted, with “r:” and “rm:” also signifying Room.

Keys and values are separated by ‘:‘, optionally surrounded by white space.

Empty values are permitted.

Key/Value pairs are separated by white space.

sysLocation may end with a comment, after white space followed by ‘#‘.

sysLocation may be all comment (no Key/Value pairs at all) if it begins with ‘#‘ or white space followed by ‘#‘.

The Nice value is case sensitive, may contain white space, may not contain ‘#‘ or ‘:‘, and must be last (if it is included).

All other Keys and Values are case insensitive, may not contain white space, may not contain ‘#‘, and may appear in any order.

Any excess white space may be removed from Nice values and from comments when parsing sysLocation.

World IPv6 Day – Urbana campus information

World IPv6 Day

What is World IPv6 Day?

World IPv6 Day is a 24-hour chance for service providers to test out IPv6 and see how it works in their environment. Major providers like Google, Facebook, Yahoo!, Akamai are using June 8, 2011 (GMT) as their test. For people on our campus, the official “day” will be 7pm on June 7th through 7pm on June 8th. The goal of this exercise is to see what is easy, what is hard, and what breaks when you turn on IPv6.

The website http://www.worldipv6day.org/ has more information on the World IPv6 Day.

What is IPv6 and Why do I care?

  • The short version is IPv6 is the next generation of IP addressing, since the world is running low on the current IPv4 addresses. Low enough that some users are only getting IPv6 addresses. You care because those users can only access your services through conversion systems, and those are out of your control. You don’t know what their user experience is and whether or not they think your service is poor because of that conversion. So you want your services native on IPv4 and IPv6 so that all users get the experience you planned for them.
  • CITES Networking and Security groups did a pair of presentations at the Fall 2010 IT Pro Forum about this. You can see the video here: http://itproforum.illinois.edu/2010Fall/schedule.php#2-B

What IPv6 services are available on the Urbana campus?

Urbana Campus Permanent IPv6 Services

  • Network Time (NTP)
  • Akamai (the caching servers are hosted on the ICCN network and serve all three campuses)
  • Network Backbone
  • ICCN (The regional network that connects Urbana with the other U of I campuses, the Internet, and R&E network providers like Internet2)

Urbana Campus Services being tested on World IPv6 Day

How to participate in World IPv6 Day

From the Urbana campus, you need to get on the IllinoisNet wireless SSID, and try things out. Android phones, some iPods and iPhones (running iOS 4), iPads, Windows laptops (native on Vista and 7, a patch is needed for XP to support IPv6) and Apple laptops (10.4.8 and later) should all be able to get IPv6 addresses and use them. If you haven’t connected to IllinoisNet before, you can get information on doing that at this webpage: http://www.cites.illinois.edu/wireless/wpa2/index.html

Once you are on IllinoisNet, go to a website like http://www.whatismyipv6.com/ and make sure you got an IPv6 address (if you didn’t, see the troubleshooting section below). Then try out websites like Google and Facebook see if you can tell a difference. Try the campus IPv6 websites listed above and make sure you can connect. You might want to try and see the “Dancing Turtle” which is a page that is only animated if you connect with IPv6 to this website: http://www.kame.net/ . If everything is going smoothly, you shouldn’t be able to tell you are on IPv6. Just do your normal email, web and other network things. For the servers and services testing IPv6 you’ll be providing them with data in their log files, in number of IPv6 users they served and if there are problems, by letting them know about them.

A handy tool for Firefox users is https://addons.mozilla.org/en-us/firefox/addon/showip/ which shows the IP address of the server you’re connecting to at the bottom of your window. you can quickly tell if you’re on an IPv6 server or not.

How to provide feedback on your IPv6 experience

  • ITPros can call 244-1000 to report problems or outages of any kind, whether or not they are related to IPv6
  • For less urgent feedback, ITPros can join the IPV6-USERS listserv and post feedback there
  • If you are not an ITPro then please send email to ipv6day-feedback@ct-mail.cites.uiuc.edu with your feedback.

Troubleshooting IPv6

I didn’t get an IPv6 address, how do I get one?

  • First make sure you are connected to IllinoisNet wireless as your only network connection
  • Then make sure you haven’t turned IPv6 off on your system
  • Windows XP users might need to install a patch. http://support.microsoft.com/kb/2478747
  • If you are on IllinoisNet and have IPv6 enabled but still aren’t getting an address you can stop by our World IPv6 Day table just outside the CITES Help Desk in DCL from 10am to 4pm on June 8th and someone will help you figure out why it isn’t working.

I got an IPv6 address but I can’t get to any of the IPv6-only pages

  • If you have time, come to our table just outside the CITES Help Desk in DCL from 10am to 4pm on June 8th and someone will help you figure out why it isn’t working.

I got an IPv6 address but now nothing works

  • Follow the instructions for turning IPv6 off below.
  • If you have time, come to our table just outside the CITES Help Desk in DCL from 10am to 4pm on June 8th and someone will help you figure out why it isn’t working.

I got an IPv6 address and something are working but others aren’t

  • Follow the instructions for turning IPv6 off below.
  • If you have time, come to our table just outside the CITES Help Desk in DCL from 10am to 4pm on June 8th and someone will help you figure out why it isn’t working.

How to turn IPv6 off

CITES multicast information

Multicast usage on campus is growing, and CITES is working hard to make the underlying networking system for multicast more stable. In order to do this we will need some help from the departmental IT Professionals.

If you’re not familiar with multicast and how it works, please take a minute or two to read this UIUCnet multicast basics document on the CITES website:

http://www.cites.illinois.edu/network/advanced/multicast.html

Here’s what CITES has already done and what we have in progress:

We have updated our campus edge multicast filters to the current best practices list based on information gathered from Abiline and other I2 institutions. These filters keep us from sending out to the rest of the world things like our Ghost and Retrospect Remote traffic, and also keeps us from getting that traffic in from other places. We are blocking well known “problem” multicast addresses like Norton Ghost, as well as all reserved addresses that are not allocated for use at this time. For a complete list of what we are blocking at the campus edge, please see the end of this email. If there is an address we are blocking that you have a need for, please contact multicast@uiuc.edu and we will work with you to enable the groups you need.

We worked extensively with our core router vendor to make changes to their multicast routing behavior so that it would work in a supportable way in our environment. At this time we believe that the core routers support of multicast is up to the every-day use of multicast.

We have setup an “anycast” style Rendezvous Point (RP) on the campus side of the firewalls for responsiveness to things on campus (and for functionality incase of an exit issue) and one on the far side of the firewalls to use for multicast peering to other institutions. This will remove the RP as a single point of failure for on-campus use, since either can take over if one is not working. the campus side RP is offline due to software issues. We are working on returning that to service.

CITES is also working with our various hardware vendors where we have found multicast problems to be sure that the vendor knows about the issues we are seeing and are working on a fix.

CITES Network Designers are making sure that IGMP snooping is turned on for all newly deployed devices to be sure that multicast isn’t flooded throughout the building networks by default. They are also working with net admins to turn on IGMP snooping in existing equipment where it is not already on. If you would like to request multicast to be enabled for your network please have the networking contact for the subnet mail ndo@uiuc.edu with your request.

CITES has moved to a default of turning multicast routing on for a newly created subnet so that multicast features can be used by the IT Professionals and the Unit’s users. Any Unit can choose to leave multicast off, and any Unit with an existing subnet that does not have multicast on can request it be turned on.

To request a multicast address send email to multicast@illinois.edu and describe what you’re doing, how long you need the address for and whether it should be a global address to a limited-to-campus address.

As mentioned above here’s a list of multicast groups that are blocked at the campus exits. For those of you not familiar with the details of the exits, NCSA is on the far side of these connections, and so these groups are also blocked to NCSA.

inbound to campus information on the following groups:

224.0.1.1
224.0.1.2
224.0.1.3
224.0.1.8
224.0.1.22
224.0.1.24
224.0.1.25
224.0.1.35
224.0.1.39
224.0.1.40
224.0.1.60
224.0.2.1
224.0.2.2
224.1.0.38
224.0.0.0 0.0.0.255
224.77.0.0 0.0.255.255
224.128.0.0 0.0.0.255
225.0.0.0 0.255.255.255
226.0.0.0 0.255.255.255
227.0.0.0 0.255.255.255
228.0.0.0 0.255.255.255
229.0.0.0 0.255.255.255
230.0.0.0 0.255.255.255
231.0.0.0 0.255.255.255
234.0.0.0 0.255.255.255
235.0.0.0 0.255.255.255
236.0.0.0 0.255.255.255
237.0.0.0 0.255.255.255
238.0.0.0 0.255.255.255
239.0.0.0 0.255.255.255

outbound from campus traffic blocked on the following groups:
10.0.0.0 0.255.255.255 any
127.0.0.0 0.255.255.255 any
169.254.0.0 0.0.255.255 any
172.16.0.0 0.15.255.255 any
192.168.0.0 0.0.255.255 any